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The problem of magnetohydrodynamic free convection of an electrically conduct- 
ing fluid in a strong cross field is investigated. It is solved by using a singular 
perturbation technique. The solutions presented cover the range of Prandtl 
numbers from zero to order one. This includes both the important cases of 
liquid metals and ionized gases. A general examination is given of the role of the 
important parameters: Hartmann, Grashof and Prandtl numbers of the problem. 
This provides clear insight into its singular character and yields the correct 
expansion parameters. The boundary-layer approximations are derived from the 
complete Navier-Stokes and energy equations. The conditions for these approxi- 
mations to be valid will be explicitly stated. Attention is given to ‘power law’ 
wall-temperatures and magnetic fields, and an assessment is given of the range of 
application. 

1. Introduction 
Several aspects of steady free convection of an electrically conducting fluid in 

magnetic fields have been discussed in recent years by a number of authors 
(Singh & Cowling 1963, Riley 1964, D’sa 1967). Riley was the first to recognize 
that the solution of the equations of magnetohydrodynamic free convection of a 
viscous flow upwards along a heated vertical semi-infinite plate, in the presence 
of a strong magnetic field acting in a normal direction to the boundary, re- 
quires the application of the method of matched asymptotic expansion. Riley’s 
reasoning, which was given for a constant magnetic field and a constant wall- 
temperature, is essentially the following. 

Near the leading edge the velocity is very small so that the magnetic force, 
which is proportional to the magnitude of the longitudinal velocity and acts in 
the opposite direction, is also very small. The fluid will be accelerated by buoyancy 
forces alone and balancedessentially by viscous shear forces. Now, it is known that 
in free convection fields in which no magnetic forces are present the longitudinal 
velocity increases as the root of the distance from the leading edge. This relation- 
ship will not hold if an appreciable magnetic field normal to the plate is present: 
the force induced by this field will retard the flow. Since the buoyancy force is 
constant, a state of balance will be attained when the magnetic force is also con- 
stant, i.e. when the longitudinal velocity is constant. Thus, all the fluid is 
entrained upwards and gradually approaches this constant characteristic velocity. 
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Viewing the plate from a distance it seems as if the plate were moving upwards 
with this constant velocity. Singh & Cowling and Riley showed, indeed, that in 
strong magnetic cross-fields the major (outer) part of the flow is described by 
Blasius’s equation with boundary conditions for a moving plate in a fluid at rest. 
In  the present problem the plate is not moving, so that near the boundary there 
has to be a thin (inner) layer in which the longitudinal velocity decreases to zero. 
In  this layer the viscous stresses are of the same order of magnitude as the buoy- 
ancy and the magnetic forces. 

In the present paper solutions to boundary-layer equations only will be given. 
The validity of the boundary-layer approximation will be carefully investigated 
by starting the analysis with the full Navier-Stokes and energy equations. The 
full range of Prandtl numbers from zero to unity will be covered. That includes 
the important case of magnetohydrodynamic free convection in liquid metals. 

The solutions of Riley and D’sa were given for P N 1. As this problem involves 
three characteristic numbers, viz. the Hartmann number, the Grashof number 
and the Prandtl number, it was deemed necessary to give a general examination 
of the importance of each of these parameters. This investigation reveals that 
the solution requires the introduction of a double series expansion which is 
partly singular and partly regular. The theory will be applied to ‘power law’ 
type of wall-temperature variations and magnetic fields. An estimate will be 
made of the limitations of application. As in Riley’s analysis, the Joule heating 
is not taken into consideration. 

2. Inner and outer equations 
As indicated in 3 1, we shall solve the present problem in the region where the 

buoyancy and the magnetic forces balance each other. Taking into consideration 
that the order of magnitude of these forces is gP(T, - Tw) and A U respectively, 
where g is the acceleration due to gravity, P the coefficient of thermal expansion, 
T, the wall temperature, T, the ambient temperature, U the characteristic 
longitudinal velocity and A a factor of proportionality relating the magnetic 
force to the longitudinal velocity 12, we find for the characteristic velocity 

For a systematic derivation of the magnetic force the reader is referred to Singh & 
Cowling (1963). Equation (1) will be seen to be the maximum velocity existing 
in the system. 

Next, we shall try to derive boundary-layer equations for the flow. In  order to 
be able to state explicitly that the conditions for these approximations are valid, 
it is necessary to consider initially the full Navier-Stokes and energy equations. 
It will be also assumed that the Boussinesq approximations are applicable 
throughout, i.e. the density variations are taken into account only insofar as 
they affect the buoyancy term. This approach is valid if 
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The original equations are rendered dimensionless through the introduction of 
the following set of equations, where dimensional variables are denoted by a 
tilde, 

1 (3) 
d = Ix, ij = ly, .ii = uu, 7? = uv, 
!P = Tm + (T, - T,) T ,  fj = p a  +pm U2p.J 

Here 2 measures distance upwards along the vertical plate (2  = 0 at the leading 
edge), i j  measures distance normal to the plate ( i j  = 0 at the plate), .ii and ij 
are the velocities in the d and ij direction respectively, is the temperature, 
p the density and fj the pressure, 1 is a characteristic length chosen to render x 
of order unity, co refers to ambient conditions, p m  is the hydrostatic pressure 
(pref - p m g 2 )  and U is taken from (1). It may be noted that this process can only 
be used for qualitative purposes, i.e. for determining the relative magnitude of 
the various terms in the equations. In  an actual problem (cf. the similarity 
analysis), the reference quantities may depend upon the co-ordinates of the 
system. Thus, for the semi-infinite flat plate there is no constant reference length. 
However, on choosing d instead of 1 for a reference length the non-dimensional 
longitudinal co-ordinate becomes of order O(1). Since one may consider quite 
general reference temperatures and magnetic fields, it is clear that U may be a 
function of the independent variables. When determining the relative magnitude 
of various terms in the governing equations, constant reference quantities may 
be used. Thus in (3), I ,  U ,  etc., are assumed to be constants. 

The non-dimensional equations become 

au av -+- = 0, 
ax ay (4) 

These are the equations of continuity, x and y momentum and energy respectively. 
Compression work and viscous dissipation have been neglected in (7) .  Due to 
the process of non-dimensionalization three characteristic numbers of this prob- 
lem occur in (4)-(7), viz. 

the Hartmann number, H = (A12/v)*, (8) 

the Grashof number, (9) 

the Prandtl number, P = V / K .  (10) 

Here v is the kinematic viscosity and K the coefficient of thermal diffusion. In  
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the course of the analysis specific conditions which have to be satisfied by these 
parameters in order that boundary-layer approximations be justified, will be 
derived. Special attention should be given to the first two terms of ( 5 ) ,  which 
represent the buoyancy force and the magnetic force respectively. It is seen that 
these forces are acting in opposite directions and that they are of the same order 
of magnitude. The application of subsequent transformations will not change 
this qualitative equality, thus stressing the fact that we investigate free convec- 
tion in the region where both the magnetic and the buoyancy force dominate 
the flow. 

In the present paper we shall not solve the complete equations (4)-(7). Instead 
we shall try to derive suitable boundary-layer approximations. In  the outer 
layer, which comprises the main part of the flow, the traditional boundary-layer 
condition P/axZ < a2/8y2 should hold. Thus, the solution of Singh & Cowling 
(1963) can be used as a first approximation. Since the existence of the inner layer 
depends on the absence of fluid slip at  the boundary, the boundary-layer approxi- 
mations should hold there a fortiori. It is then the object of this study to investi- 
gate higher approximations due to the interaction of the inner and the outer 
region. We shall not include in the solution higher approximations of the boundary 
layer itself, i.e. the influence of the inviscid entrainment flow, existing outside 
the outer region, will not be taken into account. Corrections upon the boundary 
layer are assumed to be an order of magnitude smaller than the perturbations 
presented. In  any case, inclusion of this effect would necessitate presentation of a 
quadruple series expansion rather than the double series expansion given in this 
paper. 

Outer layer 

Singh & Cowling (1963) and Riley (1964) considering Prandtl numbers of order 
unity, stressed that the convection and the conduction terms of the energy equa- 
tion are of the same order of magnitude in the dominant outer layer. The 
influence of the viscous stresses entered the solution through higher perturbations 
only. It has to be expected that this will be even more true for P < 1. In  order to 
derive the boundary-layer equations for this region the following considerations 
have to be taken into account. Since x, u, T andp are of order one by virtue of (3), 
the order of these quantities has to remain unchanged through the boundary- 
layer transformation. As a result only v and y can be stretched. The stretching 
of these variables is restricted, however, by the condition that both terms in the 
equation of continuity (4) must remain of the same order of magnitude. Thus 
the quantities of the outer boundary layer are related to those of (4)-(7) by the 
following relations : 

X, = X, yo = TY, U, = U, V ,  = TU, To = T, p ,  =p.  (11) 

The subscript 0 refers to the outer layer. The value of r is determined by the 
condition stated above: equality of order of conductive and convective heating 
in the outer lager. This gives 

(12) 
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Through substitution of (11) and (12) into (4)-(7) the outer equations are 
obtained : 

It is clear that here these equations become boundary-layer equations only if 

This is in contradiction to the analysis of Riley (1964), who used the boundary- 
layer approximations for values of a coefficient B much smaller than unity, 
where B = P G / H 2 :  in fact he used B as the singular perturbation expansion 
variable. Later the same procedure was partly followed by D'Sa. That Riley's 
assumption of small B cannot possibly hold can easily be seen from his definition 
of the boundary-layer similarity variable. Indeed, from his (5) we find for that 
variable 

Now, for (18) to be a boundary-layer similarity variable with respect to the 
original unstretched co-ordinates x and y, B must be very large, which is in 
agreement with (1 7).  

Thus, if condition (17) holds we easily find the boundary-layer equations which 
govern the flow in the outer region: 

B* y lx t .  (18) 

Here we have solved the equation of continuity by the introduction of the 
stream function $. Equation (15) shows that the pressure is constant through 
the boundary layer, but this constant is equal to zero on account of the outer 
boundary conditions. For yo + co two boundary conditions are given, namely 

In addition, we have to find the behaviour of To and @, as yo --f 0, This behaviour 
can be determined only through matching with the solution that is valid in the 
inner boundary-layer region. The matching conditions will be formulated below. 

From the fact that the no-slip condition at  y = 0 is not fulfilled by @,,we may 
immediately infer that the viscous term in (19) must be much smaller than the 
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main terms of this equation. Since To, $o and all derivatives are of order O(l) ,  
by definition this leads to the following condition: 

PCIH4 < 1. (22) 
This may be combined with (17) to yield bounds upon the analysis as follows, 

1 < P G / H 2  < H2, (23) 
1 < ~2 < R .g 124. (24) 

R = PG is the Rayleigh number. This is again in contradiction to the results of 
Riley and D'Sa. These authors applied boundary-layer theory while assuming 
Rayleigh numbers of order O( 1) .  

Inner layer 

We have remarked earlier that Riley introduced an inner layer near the surface 
of the vertical flat plate in order to satisfy the no-slip condition, which is violated 
by the solution of Singh & Cowling. Naturally, in this layer the viscous term of 
the momentum equation should be of the same order of magnitude as the other 
main terms of that equation. Moreover, the buoyancy force and the magnetic 
force as well should be of the same order of magnitude in this layer. This can be 
understood through the following reasoning. 

In  the absence of viscous stresses only the outer layer will exist. Then the 
velocity at  the wall will equal the characteristic velocity given in (1). If the fluid 
is slightly viscous there will be an inner layer within which the velocity increases 
asymptotically from zero to the characteristic velocity U imposed near the wall 
by the outer flow. So at  the outer edge of the inner layer the magnetic force, 
which is proportional to U ,  reaches its maximum value. The buoyancy force 
reaches its maximum value at the wall. This shows that both forces are of the 
same order of magnitude in the inner layer. Riley has shown that this reasoning 
holds even for P N 1. 

In order to derive the inner boundary-layer equations from the complete 
Navier-Stokes and energy equations (4)-(7) we will proceed in the same manner 
as for the outer boundary-layer equations. First, it follows from (3) that x,  u, T 
andp are of order O(l) ,  by definition. So for the inner variables we have to obtain 
equations analogous to (1 1). The stretching constant is now determined by the 
condition that the viscous term be of the same order of magnitude as the magnetic 
and buoyancy terms. This gives 

or alternatively as 

xi = X ,  yi = Hy, ui = U,  ~i = Hv, Ti = T, pi = p .  (25) 
The inner equations are now easily found to be 
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These equations reduce to boundary-layer equations provided 

H 2 +  1. (30) 

Since P - 1 or P < 1 it follows from (17), (28), (30) that the pressure p$ does not 
vary across the inner boundary layer either. It must be noted that (30) is already 
contained in (24), so it does not restrict the range of the characteristic parameters 
any further. 

The inner boundary-layer equations are now 

Boundary conditions can only be given explicitly at gi = 0 namely, 

Ti = 1, +i = 0 at yi = 0. (33) 

For yi + co additional boundary conditions have to be established through match- 
ing with the outer solution. 

Natching 

It is known that the ratio of the thicknesses of inner to outer layer determines the 
proper expansion variable for problems of the type considered here. As the thick- 
nesses of the layers are determined by yi = O( 1) and yo = O( 1)  respectively one 
finds for the expansion variable of the singular perturbation problem (see (1 1) 

E,  = {PG/H4p,  (34) 
and (25) ), 

which measures the rate of interaction of both layers. There is, however, another 
small parameter in (19) and (31), namely 

6, = G/H4,  (35) 

whichwill give rise to a regular perturbation. Clearly the problem has to be solved 
by double expansion, which is partly singular and partly regular. The matching 
is established by the formulae 

= @J0)(x, yo, E,) + . . . + Adn)(~,)  @J")(x, yo, er) + . . . . (39) 

For the temperature an analogous expression has to be introduced. The ex- 
pansion parameters have to satisfy the conditions, 

ord(Acn+I)) < ord(Aw), A(O) = 1. (40) 
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The components of the expansion (39) may be regularly expanded in a series in 
the small parameter eT 

For the solution of the inner problem a similar set of expansions has to be given. 
Note that often the regular expansion (41) has to be modified through inclusion 
of logarithmic terms. See Stewartson (1957). 

3. 'Power-law ' wall temperatures and magnetic fields 
Power-law boundary conditions have been explored widely in boundary-layer 

theory. The reason for this is that they often give rise to simple similarity trans- 
formations. In  complicated problems such as the present one, power relation- 
ships lead to simple zeroth perturbations. Therefore, the following wall tempera- 
tures and magnetic fields will initially be considered 

T, = Tm +- N 9 ,  (42) 

A = 0 3 s .  (43) 

Since the present configuration is devoid of a characteristic length, 2 will 
assume the role of 1. On replacing 1 by 2 in (8) and (9) the local Hartmann number 
Hx and the local Grashof number Gx are obtained. Using a reference length which 
is thus variable has certain consequences for the analysis: we cannot set out 
directly from the inner and outer equations obtained from the formal analysis 
of 8 2,  since those had been derived by employing constant reference quantities. 
For the present we have to take up the original equations in dimensional form. 
On making the local Grashof and Hartmann numbers satisfy conditions ana- 
logous to those of (17) and (30), these will give rise to the following, 

We can now use the information of (1 1) and (1 2 )  to define the dimensionless 

F = T, + N5" 9(p, E ~ ,  er),  (45) 
where p, 8, and cT are given by 
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Upon substituting (44)-(48) in (5a )  and (7a )  we obtain 

+g€s(k-2s-1) ----- . (c aF a% aF a%aP a81 (50) 

The transformation to inner variables can be obtained directly through (36)-(38) 

F(~lc, ~ s ,  cr) = €8 f (7, cs, ~ r ) ,  (51) 

(52) 

P = %ST- (53) 

Through the introduction of (51), (53) into (49), (50) the inner equations are 
obtained 

es, cr)  = *(7, es, er), 

If the left-hand sides of (51) and (52) are evaluated for small values of p and 
the right-hand sides for large values of 7 matching can be established by using 
(53). 

Special cases 

Power law wall temperatures and magnetic fields include a number of important 
special cases. Some of these have been considered previously but, for reasons 
given in the first part of this paper, should be reconsidered. 

(i) k = s = 0: both wall temperature and magneticJieM uniform. This problem 
was considered in detail by Riley (1964). As we have remarked earlier the expan- 
sion variables given here differ fundamentally from those used by Riley. In fact, 
it has been proved that that author's expansion variable B must be large to 
justify application of the boundary-layer approximations. Therefore we will 
not be able to compare the results of the present analysis with those of Riley. 
However, the method of solution employed by him has many elements in common 
with the present method. We, therefore, need not elaborate on the algebraical 
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details. In  effect some of the perturbation equations coincide with the corre- 
sponding ones of Riley. One feature of his work was the occurrence of alogarithmic 
expansion term, the reason for which has been amply discussed by him. 

Analogously we may prove that the present outer expansion should be given as 

8 = 8@J’)(p) +eS8(’~’’)(p) + e,ln er8jo,’)(p) + e,8(n,1)(p) + . . . , 

f = f‘”.”’(r) + esff‘1’O’(T) + . . . , (58) 

B = e(n,O)(r)+€sB(l.o)(r)+ ..., (59) 

(57) 

while the inner expansion starts with 

where, for the present, we have left out of the inner expansion perturbations with 
respect to eT. Upon substitution of the expansions (56)-(59) in the appropriate 
outer and inner equations (49)-(50) and (54)-(55) a set of ordinary differential 
equations will be obtained for the coefficients of these expansions. Determining 
the fundamental term and the terms proportional to e, is fairly stmightforward 
if the matching rule is applied properly. We find, as did Riley, 

(60) f(0,O) = 7 - 1 + e - ~  (j’(0.0) = 1, f(1,n) = (y/2)72, &O)  = 77. 

Here y = F(n.O)”(0) = - 0.4437 and primes denote differentiation with respect 
to the argument. P(n90)(p) satisfies Blasius’s equation 

pen, 0)” + gpco, n)p(o, OY = 0, 

with boundary conditions for a moving surface in an infinite expanse of fluid at  
rest. Furthermore, we have 

(61) 

p(l.o)(p) = - 1, 8“Jyp) = 0. (62) 

Riley introduced an expansion term similar t o  er In eT in order to ensure the exis- 
tence of solutions that decay exponentially as p+ 00. Our Pj0.l) and 8$0,1) satisify 
the same equations as do the analogous functions of Riley. The solution that 
behaves exponentially for p -+ 00 and which satisfies the obvious matching con- 
dition Pin, ’)( 0) = 0 is 

(63) 

(64) 

pp, 1) = gpco, 0) - pp(o, 0’) , 

$p, 1) = - ,gpp(n, oY. 

6 is a constant which is determined by requiring that 8 ( O , l )  and F(O,1) tend ex- 
ponentially to their respective asymptotic values as p+m. The equations for 
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Referring to Riley’s work for the proof, we know that the following integral 
relation must hold if F ( O s l )  is to  have an exponential behaviour for p-+ 00 

‘ g = 1 2  Hence we find 2Y 7 

since F(O,O)’(O) = 1. This completes the solution of (63)-(64). 
Riley following Stewartson (1957) has shown that the solution to (67) cannot 

be determined uniquely, since eigensolutions such as (63) and (64) can always be 
added to a particular solution. Thus, it  is not very useful to consider F(O91) and 

in any further detail. 
The outer expansions can now finally be given as 

F = P(o.o)(p) - ~ ~ + + y 2 ~ r l n ~ r ( F ( o , o ) ( p )  -pF(o~o)’(,u))+ ..., 

8 = 8(09 ‘))(,a) - +,y2er In e&‘(O,O)~(,u) + . . . , 
(70) 

(71) 

The question about the extension of the inner expansions (58) and (59) to per- 
turbations with respect to  er has still to receive attention. It is reasonable to assunie 
that the terms, 

f i ’ O , l ) ( ~ )  erlne,.+ f ( O P 1 ) ( 7 )  e?, 

should be added to complete the expansions to and including first-order correc- 
tions. Upon substituting the inner expansions into the governing (54) and (55 )  
it is seen that the functions of (72) that satisfy the boundary conditions at  the 
wall (perturbations off, f’  and 8 zero at  7 = 0)  are 

f;o,i) = IA 2 fco,i) = ic 2 7  2, ,q(o,i) 2 = A ~ ,  e(o.1) = c7 
where A and C are constants that have to be determined through matching. 
As an illustrative example let us take matching with 8(Os1). For V+CO this term 
gives rise to a factor C7e,, on the right-hand side of (52). Upon writing this term 
as Cp(e,/es) it follows that it can never be furnished by the left-hand side of 
(52) for ,u -+ 00 if C + 0; thus we have C = 0. In  the same manner, one can prove 
A = 0. Therefore the terms of (72) should not be included in the inner expansion. 

(ii) k = 1 ,  m = 0: wall-temperature varying linearly with 53 and a uniform mag- 
netic jield. This problem was investigated in detail for P N 1 by D’Sa (1967). 
In  the early stages of his analysis D’Sa follows Riley closely, considering boundary- 
layer equations, but assuming the Rayleigh number of order O( 1) and defining an 
expansion variable RIH2 < 1. However, when presenting the case k = 1 and 
m = 0 this author changes his expansion variable into R*/H2 = e8 which we 
have found in the preceding to be the correct choice. As D’Sa only considered 
Prandtl numbers of order O( 1) there was no need for him to introduce a second 
expansion variable. The Prandtl number naturally appeared as a coefficient in 
his solution. 

We will present the result of our own analysis without the detailed calculations 
through which it was obtained. The special interest of this ca,se is, that it admits 
of a complete analytical solution. Moreover, this solution does not require the 
inclusion of irregular, e.g. logarithmic, expansion variables. Only integer 

( 72) 

(73) 2 7 ,  
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powers of cr and E, are encountered. Therefore there are also no constants which 
remain indeterminate, as was the case with lc = s = 0. Up to and including the 
orders O(E:), O(eree,) and O($) we find 

F(0.0) = 1 - e-p;  

$’(l,o) = - 1 - 1( 1 + p) e-/1. @LO) = 1 e-p 

$’CO,U = -1+1(1-p)e-p* $(O, l )  = 1 e-/1 

@(O.O) = e-p 

2 2  2P ? 

2 2  ZP 9 

f ( 0 , O )  = 9 - 1 + e-)I @O,O) = 1, 

f ( l , O )  = - 1 2 91, / y l , O )  = - 
291 , 

f(o,l)  = I - 7 - (a72 + 27 + 8) e-7, 

f ( 2 , O )  = -5-+27+Br2+~73+g(y+5)e-)1,  

j’(1,1) = - 31- + 7 + g72 + (3& + ?$y + 872 + &913) e-7, 

f ( O ,  2) = - 572-  + 291 - Ae-27 + (%7%? + l&Ly + 3 7 2  + g 7 3  + &74) e-7, 

@(0,1) = 0, 

@(2,0) = 1 + 1  27 + &72 - e-7, 

@(I, 1) = 1 

2 

8 291, 

o(O.2) = 0 
9 6  

It can be shown, by expressing F, = E ~ / P  and by expanding both D’Sa’s result 
and ours up to the order O(c:) with P - 1,  that both analyses yield exactly the 
same result. Since D’Sa worked out his solution considering suction at  the wall, 
his general result should be evaluated for the impermeable wall in this comparison. 

(iii) Heat source at leading edge of thermally insulated plate, arbitrary magnetic 
jie1d.t As we have seen in the previous examples, the main term of the inner ex- 
pansion for the temperature is merely a constant which is usually normalized to 
unity. Therefore it does not contribute to the heat flux. As a consequence the main 
term of the outer expansion yields the major part of the heat flux even at the 
wall, since the second term of the inner expansion is equal to e,yr9(0~0)’(0). Thus 
for an adiabatic wall we have the condition T ~ ( ~ B ~ ) ’ ( O )  = 0. It is true that for the 
higher perturbations we have to add the conditions B(n,m)’(0) = 0 for the insulated 
wall because in general these perturbations will no longer be linear in 7. 

Most important about a heat source problem is the wall-temperature distri- 
bution it gives rise to. It is precisely this point that can be clarified by considering 
the main term of the outer expansion. Through integration of (50), neglecting the 
terms proportional to er and E, we obtain 

t This section will also describe the solution for a thin plate with flow symmetrical on 
both its sides. 
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Now, the integral in (74) can never vanish since it is related to the heat flux 
which is dissipated by the source of strength Q, 

p is the density and cp the specific heat at  constant pressure. Therefore, a(O,O)’(O) 
can be zero only if 

By substituting (44)-(46) into (75) one may solve for the hitherto unknown 
constant N by taking only the main term of the outer expansion. It is reasonable 
to take the main term only, since the heat flux Q will remain the same even if 
6, and E, tend to zero. By substituting the value just found for N into (45), 
where one must be aware of the fact that N also occurs in C,, we find for vanishing 

(76) k = (S- 1)/3. 

E~ and es a Q 2 , p 1  + 
T, = T, + {--I a(O,O)(O) +higher orders. 

gPPCp 
(77) 

For convenience we have here replaced the normalization O)(O) = 1 by 

(78) 

From (49) and (50) it follows immediately that the first-order outer equations are 

(79) $(O, 0) - $YO, 0)’ = 0, 

(80)  &O, 0)” + I( 1 - s)p(o, O)$(O, OY + l( 1 - s)p(o, OY $(O, 0) = 0. 

a(0.o) pco, 0)’ dp = 1. 
/Om 

3 3 

One can solve these equations analytically using (78), 

P(O,O)(o) = 0 and IY~,~) (CO)  = O ,  

giving 

3 ( 1 - ~ )  1 -s)P 
O)(p) = ( c ~ s h - ~  (’&I , 

from which it is easy to derive the unknown constant of (77) .  
The search for higher approximations is developed along exactly the same 

lines as were given during the discussion of the previous problems. This does not 
yield any information that is fundamentally new. 

There is some point in discussing the admissible values of s for this example. 
It is clear from the solution that s should not exceed the value 1. Later the range 
of admissible values of Ic and s will be investigated thoroughly. Anticipating the 
results of this we may give the range of values of s for which the present example 
is meaningful. 

It is known from the literature (Sparrow & Gregg 1958, Kuiken 1967) that in 
the absence of a magnetic field the wall plume (heat source at  the leading edge 
of an insulated vertical plate) gives rise to a wall-temperature distribution that 

(83) - 4 < S < l .  5‘ 

3 F L M  40 
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behaves like 2-2. It is seen that for all values of s given by (83) the temperature 
decay in the direction Z + co will be slower than, or at  most equal to, that obtained 
in the absence of a magnetic field. This has to be expected indeed as the field will 
slow down the flow and will thus reduce the convective cooling. 

(iv) Uniform heat $ux: arbitrary magnetic Jield. Other important examples 
emerge through an extension of the boundary condition (42) and (43). Due to 
the nature of the solution, which are series expansions, it is possible to consider 
the more general boundary conditions, 

Tw = T, + NZkh(Z), (84) 

A = a Z S Z ( H ) ,  (85) 

where h(Z) and Z ( H )  can be expanded in exactly the same way as the solutions of 
(39) and (41). Instead of the homogeneous boundary conditions that have to be 
satisfied by the higher perturbations in case the wall temperatures of (42) are 
used, we now encounter non-homogeneous ones according to  the expansion of 
h(Z). Examples of a similar procedure are given in a recent paper (Kuiken 1968). 
As the present problem involves singular perturbations, the exact form of the 
series solution (39) is not known beforehand. This may complicate matters some- 
what, since h(Z) must fit the expansion (39): it may limit the generality of choice 

As an important example, we may note the problem of uniform heat flux 
through the bounding wall, which often occurs in practical cases. Under such 
conditions the wall-temperature (84) is unknown initially, and instead 

of h(Z). 

is a given (uniform) heat flux through the surface of the plate. Here h is the co- 
efficient of thermal conduction. Just as in the previous example we shall confine 
our attention to the main term of the expansion, as this obviously is the most 
interesting feature of this problem. Again it suffices to consider the main term 
of the outer expansion, since the main term of the inner expansion merely gives 
a uniform temperature distribution. From (45), (46) and (86), neglecting higher 
approximations, we obtain 

Using the definitions of ax and H, it follows that q is independent of Z only if 

k = (s+ 1)/3. (88) 

Here it is found most convenient to normalize the solution in such a way that 
1'9(~,~)'((0) = - 1. We can solve for the unknown parameter N using (87). By sub- 
stituting finally in (a4) we find for the approximate value of the wall temperature, 

q2KaZs+l 4 

h2 9P 
T, = T, + (-) O)(O) + higher orders. 



Magnetohydrodynamic free convection 35 

The value of W , O ) ( O )  can be obtained through numerical integration of the per- 
tinent outer differential equations. For s = + these differential equations admit 
of an analytical solution: 

W " O ) ( , u )  = 2) exp { - ~ / z B } ,  F(O,O)(,u) = z+( 1 - exp { -,u/z+}), (90) 
from which it is easy to derive the unknown constant of (89). 

4. Concluding remarks 
In  the course of the analysis several conditions have been derived that must be 

satisfied by the Hartmann, Grashof and Prandtl numbers and by combinations 
of these numbers. We may specify (17), ( 2 2 ) ,  (23), (24) and (30). All these con- 
ditions are combined in the one condition (24) that was also derived by Singh & 
Cowling (1963). In  addition to these bounds on H, G and P, which were found 
during the derivation of the boundary-layer approximations, we discuss here other 
restricting conditions through the requirement that theexpansion variables e,, and 
e, be small with respect to unity. Adopting the convention that a < < . . . < b 

stand for a M 10-nb we could express this as er < 1 and E ,  < 1. From (34)-(35) 
we then find 

n times 

PG/H4 4 1 (91) 

and G/H4 < 1. (92) 
According to (24) the inequality (91) does not restrict further the range of 
admissible values of H ,  G and P. So finally we have to contend with condition (24) 
and the relatively weak condition (92). 

It is quite possible to  give a practical example that satisfies the above con- 
ditions. Consider free convection of liquid mercury (approximate property values : 
P N 0.02, /3 N 10-4/0K, v N lo-' m2/s, p N lo4 kg/m3) along a vertical plate of 
length I N 0.1 m. Let a typical temperature difference be 50 "K; the induction 
B of the cross-field is 0.1 weber/m2. With an electrical conductivity of CT N lo6 
mho/m the value of A is 

The Hartmann, Grashof and Rayleigh numbers can now be obtained 

A = cB2/p N 1. (93) 

H N 108, C! N 1O1O/2, R N lo8. (94) 
It can easily be verified that these values satisfy the conditions (24) and (92). 
For the approximate values of the expansion parameters we find in this case 
e, N 0.1, c,, N 0.5. Consequently, in spite of the fact that the Prandtl number is 
very low the first perturbations of the regular expansion are predominant over 
the singular ones. 

It is of interest to note a fundamental difference between the two expansion 
parameters E,, and E,. By expressing these quantities in the physical parameters 
of the system, through (8)-(10), we obtain 

and 

3-2 
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It is seen that E, tends to zero with v. E,, however, is not affected by this limiting 
process. Since the no-slip condition holds in the present analysis, the limit 
v -+ 0 is obviously singular. This emphasizes the singular nature of es, the 
expansion variable for the singular perturbation. c, gives rise to a regular 
perturbation. 

It is necessary to analyze condition (24) for ‘power-law’ wall temperatures and 
magnetic fields. Both H and G involve powers of x. One has 

From (24) and (97) the necessary conditions for the present analysis to be valid 
far downstream are 

(98) 

- k + 2 s + 1 >  0, (99) 

and s + 2  > 0. (100) 

k - s + l  > 0, 

These inequalities are actually tantamount to H:/R,+ 0, R,/Ht+ 0 and H i 2 +  0 
as 2+m. If instead of the inequality sign we use an equality sign in (99), the 
expansion variables both become parameters independent of x. The expressions 
(98) and (100) become identical in that case. Thus if s > - 2 the solutions will 
be valid for all values of x for which the boundary-layer approximations are 
applicable. The problem for which k = 1 and s = 0, that we solved in § 3, belongs 
to this class. 

It is easy to establish the conditions for solutions to be valid near the leading 
edge: It is required that k be always less than - 3. Such cases have to be excluded 
from consideration, however, since on physical grounds one may state that k 
must be larger than - 1. Thus the title problem will either admit of solutions 
which are valid downstream only, or it will yield results that can be used for all 
values of x. In figure 1 the conditions (98)-(100) are represented in a k-s 
diagram together with the condition k > - 1.  The range (I) of admissible values 
of k and s is clearly shown in this way. 

As this analysis excluded higher approximations of the boundary layer from 
consideration, it is necessary to investigate the order of magnitude of the dis- 
carded terms in comparison with the small perturbations that were actually 
retained. A thorough investigation into this matter would require presentation 
of the boundary-layer expansions. This is outside the scope of the work presented 
here. We may obtain some insight, into this matter by guessing the form of the 
boundary-layer expansion from the experience of other authors. It is known 
that the interaction of the boundary layer with the inviscid entrainment flow 
is the cause of existence of higher approximations to the basic boundary layer. 
Now in most cases this interaction is proportional to the relative thickness of 
the boundary layer. For pure free convection past a vertical plate we have this 
behaviour (Yang &, Jerger 1964). As the inviscid entrainment is mainly caused 
by the outer boundary layer this relative thickness is determined by yo = O( 1). 
Thus the boundary-layer perturbations are proportional to 

(H2/PG): .  (101) 
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FIGURE 1. Region of validity of ‘power-law ’ conditions. 

Discarding this term with respect to requires 

(H2/PG)* < (PG/H4)* 

or H3 < R, (103) 

which may be interpreted as, say, H 3  - R x lop1. For ‘power-law’ wall tem- 
peratures the effect of condition (103) has been given in figure 1, (11). As a further 
example it is easy to verify that neglecting (101) with respect to e,” would require 
H3 < R (figure 1, (111)). The trend is clear: by extending the present expansion 
further and further without including higher order boundary-layer expansions, 
the range of admissible values of H and R, and therefore of k and 5, becomes 
narrower. Carrying through the expansion for 6, will lead to similar restrictions. 
Summing up, we may state that the conditions of (24) and (92) hold if only the 
main terms are retained. By adding further terms in the E?, es expansions the 
conditions of applicability become more restrictive. Their upper bound is given 
by the right-hand side of (24). 
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